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There has been a considerable research effort in recent years devoted to the analysis and

study of solutions of supergravity theories in various dimensions and in particular those

obtained as low energy limits of superstring and M-theory. This effort is motivated by

the important role that black holes and domain walls have played in some of the recent

developments that took place in superstring theory. These include the conjectured equiv-

alence between string theory on anti-de Sitter (AdS) spaces and certain superconformal

gauge theories living on the boundary [fl] known as the AdS/CFT correspondence, the



understanding of the microscopic analysis of black hole entropy [[] and the understanding
of various duality symmetries relating string theories to each other and to M-theory. An
interesting possibility that arises from the conjectured AdS/CFT correspondence is the
ability to obtain information of the nonperturbative structure of field theories by study-
ing dual classical gravitational configurations. A notable example in this direction is the
Hawking-Page phase transition [J] which was interpreted in [] as a thermal phase transi-
tion from a confining to a deconfining phase in the dual D = 4, N = 4 super Yang-Mills
theory. Various interesting results using Anti-de Sitter black holes and their CFT duals
have been obtained in recent years (see for example [J-[L0]).

In this paper we will focus on the study of supersymmetric solutions in five-dimensional
N = 2 gauged supergravity coupled to abelian vector multiplets [[1]]. These solutions
are relevant for the holographic descriptions of four dimensional field theories with less
than maximal supersymmetry. Explicit supersymmetric black holes for these theories were
constructed in [[]. However, these solutions have naked singularities or naked closed time-
like curves. Domain walls and magnetic strings were also constructed in [[[3]. Obviously
one would like to study the general structure of supersymmetric solutions in five dimensions
rather than some specific solutions based on a certain ansatz. The main purpose of this
paper is to construct a systematic classification of half-supersymmetric solutions.

The first systematic classification of supersymmetric solutions, following the results
of [1F], was performed in [[[§] for minimal N = 2 supergravity in D = 4. In [[d] it
was shown that supersymmetric solutions fall into two classes which depend on whether
the Killing vector obtained from the Killing spinor is time-like or null. For the time-like
case, one obtains the Israel-Wilson-Perjes class of solutions and the null solutions are pp-
waves. Further generalizations were presented in [[4]. More recently and motivated by
the results of Tod, purely bosonic supersymmetric solutions of minimal N = 2, D = 5
were classified in [[§]. The basic idea in this analysis is to assume the existence of a
Killing spinor, (i.e., to assume that the solution preserves at least one supersymmetry)
and construct differential forms as bilinears in the Killing spinor. Then Fierz identities
and the vanishing of the supersymmetry transformation of the fermionic fields in a bosonic
background provide a set of algebraic and differential equations for the spinor bilinear
differential forms which can be used to deduce the form of the metric and gauge fields.
Such a general framework provides a powerful method for obtaining many new solutions,
in contrast to the earlier methods that start with an ansatz for the metric and assume
certain symmetries for the solution from the outset. The strategy of [[§] was used later to
perform similar classifications of supersymmetric solutions in various supergravity theories.
In particular, in [[J] the classification of 1/4 supersymmetric solutions of the minimal
gauged N = 2, D = 5 supergravity was performed.

Explicit supersymmetric asymptotically anti-de Sitter black hole solutions with no
closed time loops or naked singularities were constructed for the minimal supergravity
theory in [R(]. The results of [[[9] for the time-like solutions were generalized in [RI] to the
non-minimal case where the scalar fields live on symmetric spaces and explicit solutions
for the U(1)? theory (with three R -charges) were also constructed. The constraint of
symmetric spaces was relaxed in [RJ], where solutions with a null Killing vector in both



gauged and ungauged theories were also obtained.

In this paper we focus on the classification of half supersymmetric solutions in gauged
N =2, D = 5 supergravity with vector multiplets. Half supersymmetric solutions have two
Killing spinors from which one can construct two Killing vectors as bilinears in the Killing
spinors. These vectors could be either time-like or null. Therefore one has to consider
three cases depending on the nature of the Killing spinors and vectors considered. In our
present work we will focus on the cases where the solutions contain at least one Killing
spinor with an associated time-like Killing vector. In order to investigate supersymmetric
solutions with more than one Killing spinor, it is very useful to express the Killing spinors in
terms of differential forms 23 -RJ]. Such a method, known now by the spinorial geometry
method, has been very efficient in classifying solutions of supergravity theories in ten and
eleven dimensions [P R9]. The spinorial geometry method has also been recently used to
classify half-supersymmetric solutions in N = 2, D = 4 supergravity [B(].

We organize our work as follows. In section two, we present the basic structure of
the theory of N =2, D = 5 gauged supergravity coupled to abelian vector multiplets and
the equations of motion. In section three we express spinors in five dimensions as differ-
ential forms on A*(R?)® C. We start with the generic form of the spinor and then use
the gauge symmetries (U(1) and Spin(4, 1)) preserving the symplectic Majorana condition
to write down two canonical forms for a single symplectic Majorana spinor corresponding
to time-like and null Killing vectors. In section four, we derive the conditions for quar-
ter supersymmetric solutions with time-like Killing vector. In section five, the N = 1
Killing constraints, i. e., the conditions for a time-like quarter supersymmetric solution,
are then substituted into the generic Killing spinor equations and the resulting equations
are rewritten in the form of constraints on the Kéhler base. Section six contains a detailed
classification of half-supersymmetric solutions. Our paper ends with two appendices. Ap-
pendix A deals with the determination of the linear system obtained from the Killing
spinor equations. Appendix B discusses the integrability conditions of the Killing spinor
equations. There it is demonstrated that for a given background preserving at least half of
the supersymmetry, where at least one of the Killing spinors generates a time-like Killing
vector, all of the Einstein, gauge and scalar field equations of motion hold automatically
provided that the Bianchi identity is satisfied.

2. N = 2 supergravity

In this section, we review briefly some aspects of the N = 2, D = 5 gauged supergravity
coupled to abelian vector multiplets is [[[]. The bosonic action of the theory is

1
167G

C
= / (—R+2x*V) $14Q1y (X' AxdX” — FT A xF7) —%FIAFJAAK (2.1)
where I, J, K take values 1,...,n and F! = dA! are the two-forms representing gauge field
strengths (one of the gauge fields corresponds to the graviphoton). The metric has mostly
negative signature. The constants Cjjx are symmetric in IJK and are not assumed to
satisfy the non-linear “adjoint identity” which arises when the scalars lie in a symmetric



space [[L1]; though we will assume that @ is invertible, with inverse Q7. The X' are
scalar fields subject to the constraint

1
ECUKXIXJXK =1. (2.2)

The fields X! can thus be regarded as being functions of n — 1 unconstrained scalars ¢".

It is convenient to define 1
X1 = ECIJKXJXK (2.3)

so that the condition (R.J) becomes
X x=1. (2.4)

In addition, the coupling ();; depends on the scalars via

9 1
Qs = 5 X1 X = §CIJKXK (2.5)
so in particular
J_3 J_ 3
QriX :§X[, QU&X :—§8TX1. (2.6)

where 9, denotes differentiation with respect to ¢". The scalar potential can be written as
1
Y =9V;V; (XIXJ - 5@”) (2.7)

where V7 are constants.
Bosonic backgrounds are said to be supersymmetric if there exists a spinor € for which
the supersymmetry variations of the gravitino and dilatino vanish in the given background.

For the gravitino this requires

[Vu + éX; (VuF 907 = GFIW'Yp)] € — %VI(XIVM — 347, =0, (2:8)
and for the dilatino it requires
1 v d a  3Xi, abb I
{Z (Qr™F’ 1 + 37"V . X1) € — < Viete } X' =0. (2.9)
The Einstein equation derived from (.1)) is given by
Rog+ QrJ (Fla,\FJ N = Vo XIVsXT — %gagFIWFJW> — ggam(?v =0. (2.10)
The Maxwell equations (varying A’) are
d(Qry*xF’) = —ECUKFJ/\FK. (2.11)
The scalar equations (varying ¢") are

1
[—d(*dXI) + (XMXPCNPI — ECMM) (FM AXFN —ax™ A «dXN)

_;XQVMVNQMLQNP Crprdvol [0, X7 = 0.  (2.12)



If a quantity L; satisfies L9, X! = 0, then there must be a function Y such that L; = T X7.
This implies that the dilatino equation (R.9) can be simplified to
3
FLa et = (XTX F7 ™ + 29MV, XT) € — axVy (XIXJ - 50" ) e’ (2.13)
and the scalar equation can be written as

1 1
—d (*dX[) + <ECMNI — §X[CMNJXJ> dXM A %d XN
1 1
+ (XMXPCNPI - ECMNI — 6 X1 X XN+ EXICMNJXJ> FM AxFN

1
+332 ViV <§QMLQNPCLPI + X QMN — 2X1XMXN> dvol = 0 .(2.14)

3. Spinors in five dimensions

Following [23-RJ| , we write spinors in five dimensions as forms on A*(R?) @ C. We
represent a generic spinor 7 in the form
n =M+ ue +oe'? (3.1)

1 .2 2

where e!, €2 are 1-forms on R?, 2 = ¢! Ae? and A, i’ and o are complex functions.

The action of y-matrices on these forms is given by
Vi = i€ A i), Vipr = =€ A+ (32)
We define vy by 7¢ = 71234. This satisfies
Yol =1, e =e'? et =—¢' . (3.3)
The charge conjugation operator C' is defined by
Cl=—e? Ce?=1, Cé =—¢jé (3.4)

where ¢€;; = € is antisymmetric with ejo = 1.
The Killing spinors € of the theory satisfy a symplectic Majorana constraint which is

(€?)* = €%, Ce (3.5)
so if one writes
el = A\ + plet + oel?, (3.6)
then €2 is fixed via
2 = —0*1 — e (') el + Nel? (3.7)
We note the useful identity
(V)" = =70C7,70C - (3-8)
It will be particularly useful in our work to complexify the gamma operators. Therefore
we write
1 , .
Tp = E(r}/p — iYpia) = V2ie? A
1 . ..
Tp = ﬁ(% + Ypy2) = V2iier. (3:9)



3.1 Gauge transformations and N = 1 spinors

There are two types of gauge transformation that preserve the symplectic Majorana con-
dition (B.5). First, we have the U(1) gauge transformations described by

€l cosf sin6 €l
— 3.10
<€2> (—sinﬂ cosH) <€2> ( )

and there are also Spin(4, 1) gauge transformations of the form
€t — e%fw'yﬂl'ea, (3.11)

for real functions f*.
Note in particular that (715 + vs4), 3(713 — Y24) and 3 (714 + Ya3) generate a SU(2)

1, €?; whereas 3(v12 — 734)s 3(713 + Vou)

and (vq4 — 7o3) generate another SU(2) which leaves the e’ invariant but acts on 1 and

e2. In addition, 7,3 generates a SO(1,1) which acts (simultaneously) on 1,e! and €2, e'2,

whereas 7y, generates another SO(1, 1) which acts (simultaneously) on 1,e? and e!, e!2.

which leaves 1 and e!? invariant and acts on e

Therefore, for a single symplectic Majorana spinor, one can always use Spin(4, 1) gauge
transformations to write

el = f1, € = fe'?, (3.12)

or
el = fel, € =—fe, (3.13)

or
el =f(1+e'), € =f(-e*+el?), (3.14)

for some real function f. However, under the transformation

Ea - 7160"
PYM - _’YIPYM’YD
C — =710y, (3.15)
the spinor in (B.13) transforms as
el —ifl, € — —ife'? (3.16)
and
Yo=Y 1TV Y2 Y V3T V3 Ve a (3.17)

and C' is unchanged. This transformation corresponds to reflections in the 0,2, 3,4 direc-
tions. Moreover, the spinor in (B.16) is equivalent to that in (B.1J) under a SU(2) gauge
transformation. The spinors corresponding to (B.13) and (B.13) are therefore equivalent
under these transformations. Hence, for a single spinor, one need only consider the cases

(B.12) and (B.14).




3.2 Differential forms from spinors

In order to define differential forms, we first define a Hermitian inner product on A*R? @ C
by
3
(291 4 2tel + 22e? + 2%e'? w1 + wle! + w?e? + wel?) = Z Zhw . (3.18)

a=0

Then Spin(4, 1) gauge-invariant k-forms are obtained from spinors €, n via

a(ean)ﬂl,---,#k = _<CE*?7u1,...,ukn>' (319)

In particular, for the generic Majorana spinor given in (B.6) and (B.7) one finds
(€€ iy = (V0 Yty € (3.20)
The scalars are then given by
ale®, ) = e(lof? + AP — [ — 1gl?) (3.21)

Hence, by comparing with [[[g], it is clear that the spinor given in (B.13) corresponds to the
time-like class of solutions, whereas that in (B.14) is in the null class of solutions. With a
slight abuse of notation, we shall refer to the corresponding Killing spinors as being either
time-like or null.

3.3 Canonical N = 2 spinors

We will now assume that there are two linearly independent symplectic Majorana Killing
spinors €%, n%, where € is time-like. In appendix B it is demonstrated that the existence of
such spinors is sufficient to ensure that the scalar, gauge and Einstein equations of motion
hold automatically from the integrability conditions, provided one assumes that the Bianchi
identities are satisfied. So the only equations which must be solved are the Killing spinor
equations together with the Bianchi identity.

From the previous reasoning, we can take ¢ to have the canonical form.
e =f = fe? (3.22)

for f € R. Next consider n* given by

V= A+ e’ +oe'? (3.23)

n? = —0* 1 — € (') el + Nel? (3.24)

for complex A, u;, 0. It is possible to simplify n® a little using gauge transformations which
leave €* invariant. In particular, by using an appropriate SU(2) transformation, one could
for example set u? = 0 with u' € R. However, we will not make this gauge choice.



3.4 The 1/4 supersymmetric time-like solution

In this section we obtain the time-like solutions preserving a quarter of the supersymmetry

using the spinorial geometry method. These solutions were derived in [, 3. In order to

obtain 1/4 supersymmetric solutions with time-like Killing spinor, it suffices to consider the
equations (A.1])-(A.12) and set 0 = p? = 0 and A = f. Then from the dilatino equation,

we find
Flmm — XIHmm _ a(]XI,
Flop = X Hop — 8, X7,
(Flmn . XIHmn) 61”/Ln — QXVJ(XIXJ o gQIJ)7

whereas from the gravitino equation we find
1

1
——(2 mm Hmm = U
faof 4( wo, + ) 0

wo,0n + Hop = 0,
(Hynn + 2w0,mn) €™ + 2x V(X1 — 347) = 0,
1 1
? S — 1 (2wp,m™ — 3Hop) = 0,
1
Hpyg — 3 (Hpn™0pg — 2wpog) = 0,
—wp7mﬁ€1%ﬁ + H()ﬁﬁﬁp + 3XV]AIp = O,

1 1
?Qﬁf =5 Qwpm™ = Hop) = 0,
1
Wp,0q + (ZHmnEmn - XVIXI> epq = 0,

3XV[AIp — w@mﬁemﬁ = 0.

To analyze this linear system, we will first consider the gravitino equations.

(B.28) implies that

80f = Oa
and
Hmm = —2w07mm.
Next, consider (B.29), (B.31)) and (B.34). These imply
2
H(]p = _?apf’
2
Wo,0p = ?apfa
1
Wpm' " = —=0pf
D, f p
From (B.3() and (B.35) we find
Wpg)0 =0,

(3.25)
(3.26)

(3.27)

(3.35)
(3.36)

Note that

(3.37)

(3.38)

(3.39)
(3.40)

(3.41)

(3.42)



and 5
W[m,o}ﬁemﬁ + EXVI(AIO -xh=o. (3.43)
From (B.39) we find

W(p@)o =0 (3.44)
and from (B-33) and (B.36]) we obtain

"0 f =0 (3.45)

—n 2
wWpmn€"" = wpmn€™" — <
f

and
3XVIAL, = wy mne™. (3.46)

Hence, to summarize, we obtain the following purely geometric constraints

aOf - 0’
Opf
Wo,0p = 4=
P f
Wip.g0 = 0,
w(p@)o = 0, (3.47)
together with
0
wp,mm + %f = 0,
9
wp,mnemn — wp,mﬁem" — ?Enpaﬁf = 0. (348)

It is straightforward to show that the constraints (B.47) are the necessary and sufficient
conditions for the 1-form
k= f%’ (3.49)

to define a Killing vector V. This form is, as expected, the 1-form spinor bilinear which is
obtained from €®. Note that this Killing vector satisfies

Lye’ =0. (3.50)

In fact, one can choose a gauge in which the Lie derivative of the vielbein with respect to
V' vanishes. To see this, note that

Lye? = f(wopg — wgpo)e’ + Pepgwio mpne €. (3.51)

From (B.43) we note that wy €™ € R. Without loss of generality we can make a U(1)
gauge transformation in order to set

ViAL =vixT . (3.52)

This gauge transformation alters the form of the Killing spinors via the transformation
given in (B.1(). However, the Killing spinors can be restored to their original form by



making a U(1) € SU(2) C Spin(4, 1) gauge transformation generated by 7,5 —34. Working
in this gauge, (B.43) implies that w z,),¢™" = 0 and hence

Lyel = AP el (3.53)

where the constraints in (B.33), (B:3J) and (B.47) imply that A € su(2). By making a
further SU(2) C Spin(4, 1) gauge transformation generated by ;9 4+ V34, Y13 — V24> Y14 + V23
which leaves 1,e!? invariant and maps e? — XPed for X € SU(2), we can without loss of
generality take A = 0. In this basis the vielbein is time-independent.

Equation (B.48) also has a simple geometric interpretation. First note that the only
U(1) gauge-invariant 2-form which can be obtained from e is the real part of the 2-form

(e, e!) = —(Cf 1y, f1) = £, 7, 1). (3.54)
The real part of this form (denoted by J) is then given by
Jog = —Fepgy  Jpg = —Fepg. (3.55)
It is convenient to make a conformal rescaling of the complexified basis and define
ef = fleP, ef = fleP. (3.56)
We shall refer to the 4-manifold with metric
dsg? =2 (éléI v é2éi> (3.57)

as the base space B. Then it is clear that J defines an almost complex structure on this

4-manifold. In fact, (.4§) implies that J is covariantly constant with respect to the Levi-
civita connection of the base manifold, and hence B is a Kéhler manifold (as expected)
with Kahler form J.

Also, from (B.3d) we have

3XVIAL, = wymne™. (3.58)
We remark that (B.5§) implies that
P =3xVi(Al e + Al eP). (3.59)

where P is (locally) the potential for the Ricci form of the Kéhler base B.!
The remaining constraints on the H-flux are then

0
Hop — —Q%f, (3.60)
Hypn €™ = =200 mne™ + dx Vi X7, (3.61)
2
Hyq = -3 (wo,m"™dpg + wo,pg) - (3.62)

'If we are in the ungauged theory with x = 0, then the vanishing of wy mn is then sufficient to imply
that the base B is hyper-Kahler. But we shall take x # 0 throughout.

,10,



Finally, we substitute these constraints into the dilatino equations. From (B.25)-(B.27),
we find

doX! =0, (3.63)
FL™ = —2w,," X7, (3.64)
1
Flo, = —Fan( 2xh, (3.65)
(Fln 4 2X T wo nn) €™ = 3xV,(2X X7 - Q). (3.66)

4. Killing spinor in N = 1 background

In this section, we substitute the constraints obtained in the previous section back into the
generic Killing spinor equation (A.1)-(A:13) and simplify as much as possible. We find
from the dilatino equation:

3
p" o X1 = —V2xV; (XIXJ — 5@”) Imo, (4.1)
m I 2 P I IyJ 3 1J ™\ *
P E g + 5 (Wop"Omg + womg) X7 | = xVy | XTXT = SQ Jemg(u™)",  (4.2)
L 0n X = V22XV (XIXJ - ;@”) Im \. (4.3)
And from the gravitino equations we find
Ao\ = 2i (x/E”Tamf —ViXITm 0) , (4.4)
Opo = 2i (ﬂ%e"man f+xViX!Im A) , (4.5)
2 *
Oog = =5 1" (2Womg — wop"Omg) + 2XVi X emg(p™)*, (4.6)
and
. . XI o
8<%> = % <—\/§/Lp (CUOJ«”ET‘” — 3X‘/21 ) +Wﬁ7mﬁ€mn Im )\) 5 (47)
Op (%) = % <\/§,um <2w0,pm — %epno — Wpmne " Im O'> , (4.8)
o 2iv/2u™ - " ixvixt, ., i o
3p<?> = T(u)qpﬁﬁ m +WO7n Epm) — \/_Tf(,uﬁ) + ?wpmne Im )\7 (49)
A 20/ 2™ ixViX i .
o5 2 ) = L2 (wopm — won0m) + o (™) = —wp mne ™ Tm o, (4.10
<f> 3f (0,1) 0, p) \/if p( ) fp ( )
ok n Ouf m Opf Om f
Opug = (1) (Wp,mq t+e pqu—) —H (25qu —0pg—— + Wpmg
f ! !
—V2xVi X155 Im o, (4.11)
Ophg = —H < qm% ~ e JruJp,mq> + wpmg(k™)
+V2x Vi X ez Tm A (4.12)

— 11 —



Note that these equations admit a solution of the form A = p, f, 0 = pof, p = 0 with
p1, po real constants, and no additional constraints on the fluxes or geometry. Hence we
observe that the generic time-like solution preserves 1/4 supersymmetry. More generally,
if n*, n? are symplectic Majorana Killing spinors, then so are

Y =n* () =-n (4.13)

which is just a special case of () with 6 = 7. In particular, the equations computed
above are invariant under the transformations

A — —oF,
o — N\,

R (4.14)
therefore it is clear that the Killing spinors arise in pairs.

4.1 Solutions with py? =0

Suppose we consider the case when p? = 0. Then, assuming that V; X! # 0, we find from

({.11)) and (4.12) that

Imo=ImA=0. (4.15)

If, however, V; X! = 0 then ({.1]) and (f.3) again imply ([.15), as we assume that not all
of the Vj vanish.

Hence, from (£4), (£5), (EJ) and ([{.9) it follows directly that A\ = p,f, 0 = pof,
wP = 0 with py, p, real constants. The solution is therefore only 1/4-supersymmetric. Thus,
to find new solutions with enhanced supersymmetry, one must take pP # 0; henceforth we
shall assume that p? # 0.

4.2 Constraints on the base space

It will be particularly useful to rewrite the equations (f.1)—(f.12) in terms of constraints
on the Kahler base. Throughout this section, unless stated otherwise, tensor indices are
evaluated with respect to the 4-dimensional complex basis &P, &P; so we shall drop the "
from all expressions. It is convenient to define a real vector field K on the Kéhler base as
follows

KP =if?uyP,  KP = —if*(uP)*. (4.16)

In order to rewrite the constraints, we define a time co-ordinate ¢ so that the Killing
vector field associated with the Killing spinor €* is

0
= 4.1
1% P (4.17)
and set
e’ = f2(dt + Q) (4.18)

where € is a 1-form defined on the Ké&hler base.

- 12 —



Then ({.11)) is equivalent to
1

Vela = g;

OiAGpg + 0, Ky

(4.19)

where here V denotes the Levi-civita connection of the Kéhler base metric given in (B.57).

Also, (U.19) can be rewritten as

1
Vqu = f—zfatO'*qu + Qp&qu.
It is also useful to define
Z =igd.
It is then straightforward to show that
1 *
vaq == \/_—Qf(?ta 6pq + Qp(?th,
1
vaq = —\/_—Qfat)\ﬁpq + Qpath.
The commutator is given by
2
K, ZP = —i\/T— (KPP0 (Imo) + ZP0;(Im N)) + (ixgQ)0, ZP — (i72Q)0. K?,

[K, Z]ﬁ == ’L% (Kﬁ(?t(lma) + Zﬁ(?t(lm)\)) + (ZKQ)atZﬁ - (’L'ZQ)atKﬁ,

Next, (.1) and (E.3) are equivalent to
KPV, X! = —\2ixfV; (XIXJ — gQ”> Im o,
ZPV,XT = V2ixfV;y <Xf X/ - ;@”) Im \.
These equations simply imply that
LrX'=LzX"=0.
In addition, (f.4) and (L) can be rewritten as
O = 2 (\/ivap F—ixf2V; X! Im a) :

and

B0 =2 (\/izﬁv,; F+ixf2Vix! m )\) .

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

In order to simplify the remainder of the equations, observe that for indices u, v # 0,

1 ~
wWo,ur = _§f4(dQ);w

,13,
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and
Wp,gr = —fWp,qr (4.30)
where on the Lh.s. of (£.29) and ({.30), spatial indices are taken with respect to the original

five-dimensional basis, whereas on the r.h.s., they are taken with respect to the conformally

rescaled Kéhler basis; and @ denotes the spin connection of the Kéhler base space. From
henceforth, the hat will be dropped, and we will work solely on the Kéhler base space.
Then (.4) is equivalent to

1
0K = 3 FORP (2dQp5 — dQn™0pg) + 2xf2Vi X' Z; (4.31)

and using this, (L) can be rewritten as

3 1 1
KPF! ;= fAXTKPdQ,, + f—>2< (Xf X7 - 5@” > Vi Z; — FathXf : (4.32)
It is also useful to rewrite (B.64) as
Floy = 2XTd0, + X (x'x7 — 1oy 4.33
pg = [ pq T 72 2Q J€pq - (4.33)
In addition, ([1.§), ([.9), ([.10) and ([L.7) can be rewritten as
A 1 . 1 Q
Vp<Re ?> — E(’LKdQ)p + Wath — 71)(% Re )l = 0, (434)
o 1 . 1 Q,
Vp Re ? - E(szﬁ)p + \/_TfGBth — 7(% Reo = 0, (435)

A { mn - 2X N2
vp<1m ?> =27 <dene + FV[XI> Zp = i~ (K7dQpq + Q")

1 Q
+—wpmne"" Imo + 7p(9t Im A, (4.36)

f
) 2 AV
Vp<1m E) =2 (denem” + —XV[XI>KP + %(qugpq + Z,d2,9)

f 2V2 fA
1 mn QP
— ?wp,mne ImA\+ 78,5 Imo. (4.37)

5. Half supersymmetric solutions

Suppose that the solution preserves exactly four of the supersymmetries. Then the four
1

linearly independent Killing spinors are €', €2, nt,n? and

() =€, (&) =-¢,

) = ) =-n" (5.1)
As all of the scalars, gauge field strengths and components of the spin connection are t-
independent, it follows that d;n',d;n? is also a Killing spinor. As the solution is exactly
half-supersymmetric, it follows that there must be real constants ¢y, co, c3, ¢4 such that

ot = eint + can® + cze' + cu€? (5.2)
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or equivalently
O = LA — 0™ + c3f,
0o = c10 + ca\* + euf,
Op” = c1p? — coeg”(u?)"
On substituting these constraints into (f.6) we find that
1
f 3
Contracting this expression with (©?)* we find that

C1 2
(uh)* <Puq + gum@wo,mq - wo,pp5mq)> = 0.

The real part of this expression implies that ¢; = 0.
Suppose now that ¢z # 0. From (b.3) we find that

P = —coeg” (u?)"

and hence

pP = aP cos(cat) + €8 5(a?)* sin(cat)

where 0;aP = 0. Note that by making a redefinition of the type

)‘:)‘/__f7
C2

Jzal—i—c—gf,
C2

we can without loss of generality set ¢ = ¢4 = 0 and drop the primes on A and o.

* 2 *
— (C1pg + Ca€qn(p™)*) + S 1™ (2w0,mg — W0 " Omg) — 2XViX emg(u™)* = 0.

It will be convenient to split the solutions into three classes. For the first class co # 0
and c3 = ¢4 = 0, for the second ¢y = 0 but c3% + c4? # 0 and for the third ¢y = ¢3 = ¢4 = 0.

5.1 Solutions with co #0, cg =¢4 =0

For this class of solutions we have
O\ = —co”,
0o = c\¥,
P = cePq(u?)”

where ¢ = ¢ # 0. Here we have the conditions 0, K = —cZ and 0;Z = cK.

(5.9)

To proceed with the analysis for these solutions, we define the 1-forms ¢, ¥ and L on

the Kéahler base via

Ly = % (AZp —0"Kp),  Lp= % (\'Z, - oK)
1 1

Yy, = ? (N*Zp —0Kp), ¢p = ? (A — 0" Kp),
1 1

gbp = ?(AKP—FU*ZP), ¢13: ?(A*Kp‘{‘JZp)

,15,
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The components of these 1-forms can be easily shown to be t-independent

0Ly = Orb, = D, = 0. (5.11)

For convenience we set 52 = |)\|2 + |a|2 and z = ()\*)2 + o2,

In order to evaluate various integrability constraints, it is useful to compute the com-
ponents of the covariant derivatives:

1 3
VL, = ~7 (denemn + FXV[XI ) (K,Ky+ Z,2,),
1 m c€? 1 VXt e
Vplg = ﬁdﬁm (Zqu—Kqu)—i—\/_szépq—ﬁ (3?—%? (Kqu—i—Zqu), (5.12)
and
1 /3xVix! ¢ 1 m
Vpi,l)q == —ﬁ (T + F) (Kqu —|— Zqu) —|— Edgm (Zqu — Kqu)
5
_ f;c Im(Ao)€pg, (5.13)
1 mn 3 I cz*
Vg = ) dQpne™" + FXVIX (Kp,K;+ ZyZ) + i Spgs (5.14)
and
1 mn 3 I C *
quSq = E denE + FXV[X (Kqu — KqZp) + \/_TJCQZ qu, (515)
1 m 1 3xvixt ¢
Vpdg = —%dﬁm (KpKq+ ZpZq) + %(? + F)(szq — KqZy)
3
+% (A0}, (5.16)

It immediately follows that dL. = 0 and ¢ defines a Killing vector on the Kahler base space.
In particular, setting K? = 2K,KP?, L is exact and satisfies

dK?* = V/2¢L. (5.17)

The first integrability condition we shall examine is obtained by considering the constraints
(B.24), (1.29), (1.27) and ([.28). These are equivalent to

%) — I\é_g <XVI(¢—L) —C%L) (5.18)

Taking the exterior derivative of this equation, we obtain the constraint

d(

dy = 0. (5.19)

Hence, using (p.13) and (5.14) we obtain the constraints
dic

A" = fin

Im(Ao), (5.20)

,16,



and 1
Observe also that ([.31) is equivalent to
2ic

2K

Using (b.1§) and (p.16), we compute

dp = V2 (3”?;3([ + fcﬁ> KnZ+— <K2 (dene %) - 20;2> J.  (5.23)

To proceed, we impose the integrability condition, d?¢ = 0. We note the following useful

deé =

3 c
Im(Ao)6pg — e <2XV1XI f2>(Kqu—Zqu). (5.22)

identities:
\/—d< —XViX'+ fcﬁ> = ;2—‘[/({2 (—3;8(@” 2XIXJ)VJ+2cf2 )(zp L)
ffK2 <2XV1XI ;2>L (5.24)
and
2
LANKNANZ = KT(L—T/))/\J,
2
VAKNZ = —%( =) A,
d(K NZ) = %(:ﬁp LYAJ (5.25)

from whence we obtain

IV X! 6V X!
d(( = fcﬁ>mz>mf_d <K2< i *%))z (5:26)

Using this expression, the constraint d?¢ = 0 implies that

mn V20 2zt 6x VX!
Q™ = -
K2 ' f2K2 Iz

(5.27)
for real constant 6.

Next we consider the integrability condition d?Q = 0. It is straightforward to show
that dS satisfies

\/_d< ) ;2<21?—§(—22><J—FK/\Z>+\/§9K2J. (5.28)

Hence the integrability condition d?€Q = 0 implies that

c c€? 2 0 B
(o ) Zns)e Ao e
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We observe that

1 262 2 V2 2/2 (€2 1 8v/2i
vp<ﬁ—f2K2>=(K2)2<9+f2 >zz)p+f2—K§<F—F>LP+WK;§21m(AU)¢p.

(5.30)
It is then straightforward but tedious to show that () implies
Im Ao = 0. (5.31)
Using this condition the above relations simplify and we obtain
aQ,™ =0,
0 \/EC * 3 T
VpoLy = — (F + f2K22 - \/§f4XVIX ) (KpK,+ ZpZy),
1 c
V,Lg = — vix!+ )KK+ZZ) —— 26,4,
pHq \/_ <f4 f6 ( \/_f2 pq
1 Iy c
Vo, = — \/_<f4VIX f6>(KK + ZpZy),
V2e o 3 I cz*
Vg = = ( T e ﬂfﬂVlX (KpKq + ZpZg) + \/—TJCQ%@,
V2¢ o 3 I cz*
Vpoy = ( + f2K2 \/ﬁf4XVIX (KpZy — KoZp) + \/_Tfqu’
1 c
Vg = 7<f4 Vix! + f6>(K Z; — K;Z,). (5.32)
The components of df2 are therefore given by
1 Iy
dQpg = ~ iR <6xVIX f2>(K Zg — ZpKyg)
mn 2c P I \/79

Using the expressions for d2 which we have obtained, we next examine ({.34) and (£.39).
These may be rewritten as

v,,(?) _ _% ( 0 ffﬁ fgé ) Z, — &, Re (%) (5.34)

Reo 1 0 c V2e . A
vP(T) =3 (ﬁ_F\/—?fG_FWZ ) Ky + cQpRe <?> . (5.35)

We note the useful identities:

and

3ex 3\/50
VX = f4K2V1XI (Wp + Lp) — 5Ly (5.36)
N 2c V2¢ N
Vit = ——— [ 3xViX" + 55 | (W, + Lp) — 5 5L, (5.37)
o K f K
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T f\Z‘/;QZ
€MV Vi (Re %) = 0, we find the constraint

0 2 VX! 0 2i
co™ <_ - vae 52) + <3\/_CX - 2C_> Reo+ ZPwp mn€™" Im 2 =

where we have set ¥ = % + Then from the integrability condition

K2 ﬂfﬁ f2K2 f4 K2 fK2
(5.38)
Note that
Oy Im z = 9,62 = 0,
then upon differentiating (p.3§) with respect to ¢ gives
0 c V2 o Vix! b 2ic ., .
cA <K2 \/_fﬁ f2K2§ ) <3\/_ 7 —QW Re)\+fK2K Wpmn€ " Imz = 0.
(5.39)

It turns out that the constraints (5.3§) and (f.39) are also sufficient to ensure that

ViVa <Re %) — Y,V (Re %) — 0. (5.40)

Next, note that the constraints (f.33) and (f.33) can be used to write the gauge field
strengths F! as

Fl=d (X" (dt+ Q) + %VJ (XIXJ — %Q”) ( KANZ-— J)

K2

+ FXI< KNZ— J) (5.41)

and note that as (L — ) A (72K A Z — J) = 0 it follows that
d XIXJ—EQU Vin(Lrnz—J)=
2 T\ K2

It is then straightforward to show that the Bianchi identity dF' = 0 follows automatically
from the constraints we have obtained. To proceed further, it is useful to consider the cases
for which Im z = 0 and Im z # 0 separately. Observe that Im z = 0 implies that A and o
are either both real or both imaginary.

5.1.1 Solutions with Imz # 0

In order to introduce a local co-ordinate system for solutions with Im z # 0, recall that ¢
is a Killing vector on the Kahler base space. Furthermore, as ¢ = i4.J, the closure of v
implies that ¢ preserves the Kéhler form;

LyJ = 0. (5.42)
It is also straightforward to show that

LoX1=Lyf =LydY=LsF! = 0. (5.43)
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Hence it follows that ¢ defines a symmetry of the full five dimensional solution. AsIm z # 0,
(6.38) and (b.39) can be inverted to obtain

mn i ¢ 2ct? (1 z V22 02
=— | == +INVIX' | 5+ )| —— = . 5.44
Wp,mn€ \/ilmz <f4 K2 +3x V1 f2 + f2£2 52 K2 ¢P ( )
It is convenient to define the real 1-forms L and éﬁ by
ﬁp = in, f/p = —’LLﬁ,
(Abp = Z‘(bpa Ap - _Z¢p (545)
It is then straightforward, but tedious, to show that
2
d{ ——5—L) =0 5.46
(Gemzt) =0 (540)
and also that
[, L] = [¢, L] = [¢,¢] = 0. (5.47)
In addition, we find that
VX! c ) ~ o F ( 3 2 1)
do = + ANL+dNL)+ (60— KViX*|J 5.48
" <ﬂf2§2 ) @A L+anD) I (5.48)
Hence we define the following orthonormal basis on the Kahler base space
L ¢ L
where -
K¢
H? = TR (5.50)
As ¢, (Ab are commuting vector fields, we can choose co-ordinates 7, 1 such that
0 - 0
- 7 = . 5.51
Then, defining
K2
v = -, 5.52
e (5.52)
we have
L =dv (5.53)
and from (p.46) we see that there must be a function u such that
- Im 2
L= K?)?du.
ape ™)

(5.54)

As ¢, (Ab, L, L are orthogonal, it follows that (7,7, u,v) form a local co-ordinate system on
the base space. One can then write
¢ = H2(d7- + ardu + aipdv),

¢ = H?(dn + Bydu + Bydv). (5.55)
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As ¢ is a Killing vector, the functions H, f~2(K?)2Im z, ay, as, $; and B35 do not depend
on 7 (or t). Furthermore,

212
Ea)fzﬁ&Xj ZE& <(I,{f2) Imz) = 0.

Therefore f, (K?)?Imz and X are functions of v and v only. However, there is a non-

trivial n -dependence in a;, ag, B85, 895 ¢ is not a Killing vector.
It is also useful to observe that the identity Im Ao = 0 implies

(Rez)? + (Im 2)? = ¢4 (5.56)
and hence we shall set
cosY = RLQZ,
3
I
sinY = % (5.57)

Here Y is a real function which satisfies
LyY = E&)Y =0 (5.58)

which implies Y = Y (u,v). With these conventions, it is straightforward to compute

H? X!
6(9—u = H?*vsin?Y (3% - 9> ,
OH? cv c yeoVi X!
G = <3XV1XI - F) + cosY<3T - 0), (5.59)
and
oY . 9 XCUQ‘/[XI 20?2 V. XchIXI
%:slnY<—H —|—3 f4 —|— f6 +§SIH2Y 3T—9 s
Yy 1 xevVi X!
Also note that (p.1§) can be rewritten as
0 (X[) B YH?*Vsin? Y
ou" f27 c ’
0 X1 1 (xVi(cosY —1) X
Gy oAl 2 2L 61
oo = ¢ (e - (5.61)
If 0 #£ 0, then this constraint can be integrated up to give
2 H2
Xp=p2 (L X (202 _q)y). 5.62
1= (v T %6 v ! (5.62)

for constant ¢;.

— 21 —



To proceed, consider the equation (f.48), which can be rewritten as

xevVi X!
dop = f6 (3Xf2V1XI +c)(e' net+ednet) - (3T — 9> J. (5.63)
Taking the self-dual projection of (5.63) yields the constraints
Oaq 1 . xevVi X! cv?’sinY 9 I
a—n:§USID2Y<3T—9 +f7(3 fV[X +C)
Oas sinY [_xcoViX!
= — 3 -0 5.64
On H? ( f (564
together with
8042 8
— =0. 5.65
M BN +52 (9 51 377 (5.65)

Using these constraints, the anti-self-dual projection of (5.63) fixes J to be given by
J=cosY(el ne? —e* Aet) +sinY (el net —e? Aed). (5.66)

Imposing the covariant constancy condition VJ = 0 imposes two additional constraints:

9By 9P 5ﬁ1 5ﬁ2
—_— - = = 5.67
ou o 62 ﬂl ’ ( )
and 5 5 )
1
sin Yainl + §H21) sin 2Ya£n2 = _;Lffj sin2Y (3xf2ViX! +¢). (5.68)
Finally, we compare the spin connection components wy €™ computed in this basis
with the expression given in (p.44), noting that wy ™" = —%wp,,wJ 2
This implies that
0 0 2
— cos Yain1 + H?vsin? Y8£772 = CfLG cos? Y (3xf2V1XI + c)
3xcvVi X!
tucosY (Xfij - 9) — H2. (5.69)
Then from (5.6§) and (p.69) we obtain
004 1 3xcvVi X! 1
6—7’] = m cosY ( f4 9 — ;,
0 0
8%1 = —wvcosY <H2 ﬂ2+f6 (3x VX! —|—c)> : (5.70)
Then (5.67) and (5.70) can be integrated up to give
)4 oy 1
B, = —ncot Ya—u, By = <cot Y% + ) (5.71)
and (p.64) and (f.65) then imply
)4 )4
o) = (% + H* sinY) , 0p =1 (5.72)
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Hence, in these co-ordinates, the orthonormal basis of the Kéhler base space is

Y )%
! H(dT—i—n(a——i—HQsinY) du—i—n—dv),
ou v

e =
1
62 = Ed’l},
Y Yy 1
e =H dn—ncotya—du—n CotYa—+— dv
ou ov v
= HusinYdu (5.73)

and if 6 # 0, then J can be written as

H? 2,2
J = d(( cv >d7’—|—nsmde——nH%stYdu)

0 0f6
By considering (5.2§),  is fixed (up to a total derivative) by
1 cv? n (1 oY
QO=-——(H?>+—)dr+ —~(=0sinY — H>— )d
201)( * f6>T+cv<2 S 8v>v
H? (0Y 1 OH? 1
- | — 8—+H2sinY + —sinY cosY+£H2v——H4 du
cv \ Ou 2 c 16 cv

(5.74)

and by considering (b.41]) we find the gauge field strengths are given by
I

CcU
f4
3xn

7z sinY<XIXJ QU> 7(—H?v(1 4 cos Y)du + dv)] (5.75)

Fl=d [ X (dt+ Q)+ (dr +nH?sinYdu)

5.1.2 Solutions with ReA\=Reoc =0, A #0,0 #0

If A and o are imaginary but non-vanishing, then from (f.10) we obtain 1 = —L, and the
constraints on A and o as given in (5.34) and (5.35) imply that

9
< \2[62 & (5.76)
PR T PR
Moreover, (.18) can be integrated up to give
2x
X; = f2< 2V + K2> (5.77)
for constants p;. The Kéhler form can be expressed by
o.f° )
=d| ——= | . (5.78)
6 Cc K2
(9 fo+ \/ﬁK
It can also be demonstrated that € is given in these cases by
c
Q=|—-———— .79
< 0+ i ‘b) + dg2 (5:79)
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for some real function go with

Fl=d <f2Xf(dt+ Q)+ LIKﬁ)

6 f6 7
and hence
mn_ 3ex VX!
€ = g o

for some real function g; where g1, go satisfy

0p arctan <2> = 0p(g1 + cg2) -

(5.80)

(5.81)

(5.82)

Note that arctan (%) = ct + H with 0, H = 0. Without loss of generality, we can work in

a gauge for which gy = % and g; = 0.

It is then straightforward to prove the following identities:

2 N ~
2 ¢c2 n | T T 22 \/_ccQ QL/\(b’
K2(ch + £ K?) (K2)2(ch + £ K2)
2 2
d L _ V2620 Py
Dt oK) (KPPt oK)
g 2
d ¢ - V2e20 Lo
c@+ff6K2 (K )(c&—k\/_fGK)z

There are then three cases to consider.

i) If ¢ > 0 then define

It is then straightforward to show that

A —
do' = —561‘ij] Na®,

ELO'i = 0.

— 24 —
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ii) If = 0 then define

I — (5.86)

where

Lro' = 0. (5.87)

iii) If ¢f < 0 then define

o = o. (5.88)

so that

do? = o' Ao,
do® = —o' N o?,
Lrot = 0. (5.89)
Hence the 3-manifold with metric 1 ((01)2 + (02)% + (63)?) is either S?, the Nil-
manifold or H? according as to whether ¢ > 0, # = 0 or cf < 0 respectively.
5.1.3 Solutions with ImA =Imo =0, A#0,0 #0
If A and o are real but non-vanishing, then 1 = L, and from (f.34) and (f.35) we obtain

;1 40 V2cf? 2  C
ViX! = o <—K2 + st —ﬁf2>' (5.90)
Moreover, from (p.1§) we obtain
X V2
(7) = ~proeor
1 dK?
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This implies that d(K2f~2) = 0, and hence without loss of generality we can set K2 = f?

and the scalars are therefore constants. Furthermore, we also find that
2
sma(-L2),
V2t

1 1 0
Hr=—d <<\/§f2 Tovapie " 2c§2> ¢>

and

with

3v2x
2

C

Ff:d<f2Xf(dt+Q)+ <XIXJ—%QU>VJ¢+

and hence we can work in a gauge for which

f2

C

1 1
Wp,mn€"" = N (6—X (XIXJ - 5@”) ViVy+ —VIX’> Pp-

V2
It is then straightforward to prove the following identities:
2¢ ~ ~
d(2) = Y255
52
L 1 9v/2x? 1 ;
d (E) =—— <9 + *CX <XIXJ - 5@”) VIVJ>¢ A o,

d<¢> - <9+£§X2<XIXJ—%Q”>WVJ>ﬁA¢.

fé

There are then three cases to consider.

i) If e 4+ 9v2x (X T X — %QIJ)‘/[VJ < 0 then define

L0+ WRE(XIXT QI vy
o == 52 gb,
VA VRE(XIXY — QUIYy)
; f€ ’
B \/—\/5(69 +9vV2x (XX — %QIJ)VIVJ)(%
- I .

0,2

0,3

It is then straightforward to show that

_ 1 A
do' = —561‘ij] Aok,

ELUi = 0.
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ii) If ef + 9vV2xA(XTXT — LQ)V;V; = 0 then define

1___ ¢
V2c€?’
L
2
o = .=,
fé
3 _ ¢
o’ = —, 5.99
7E (5.99)
where
do! = 62 NP, do? = do® =0,
Lro' = 0. (5.100)
iif) If cf + 9v2x2 (X1 X7 — 2Q17)V;V; > 0 then define
1 0+ 22C (XTX7 — LQM)Viv,
o = - ¢a
52
VR +VIRA(XTXT — 1QIVIVy)
o = )
f€
L, VR IVIRXTXT — LQIVIV))
od = ¢, (5.101)
f€
so that
dot = 6% NP,
do? = ot NP,
do® = —o' A o?,
Lrot = 0. (5.102)

Hence the 3-manifold with metric 1 ((¢1)% + (62)2 4 (0%)?) is either S3, the Nil-
manifold or H? according as to whether ¢ + 9v2x?(X' X7 — %QIJ)‘/[VJ <0, cd+
IV (XTXT — %QIJ)‘/[VJ =0orc+9vV23(XTXT - %QIJ)‘/[VJ > 0 respectively.

5.1.4 Solutions with A=0 =10

If \=0 =0, then f and the scalars X' are constant and K? is constant. Without loss of
generality, we set f = K2 = 1. The following constraints also hold:

C
=——, VX! =—¢ 5.103
7 xXVi ( )

so that 6 # 0, V7 X! # 0 for these solutions. Furthermore, we also find

dQ = —cK A Z, (5.104)
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and the gauge field strengths are given by
1
FR:aﬂxﬂﬁ+9»+®M«?%W;5Q”yKAZ—ﬂ+aW@KAZ—ﬂ(5wm

Note also that K and Z satisfy

VZLKQ = —CQ&Z[,,
Vpi, = CQpK,; (5106)
where here V denotes the covariant derivative restricted to the base space, and [i, ¥ are

base space indices.
It is convenient to define

K, = iK, K;=—iK;

Zy =12y, L= —iZp. (5.107)
Then
J=KANZ-KANAZ, (5.108)
and
fo{f, == —CQpZD, VﬂZ[) == CQ[LK,; (5109)
where €2 is defined by
A 1 A A
Qp=Qp 4+ —wpmne™,  Qp = ()" (5.110)
c
Note that (p.109) implies that
IYNK =dONZ =0, (5.111)
and hence
dY=VKAZ (5.112)

where U is fixed by comparing the integrability condition associated with (B.59) with the
expression for the gauge field strengths (f.105). We find

1
u7=:E(9X2Q’JV}vy-—c2y (5.113)
Next we define

A, = cosctK, +sinctZy,
Ap = cos ctKj + sin ct Zp,
B, = €pqA? = cosctZ, — sinct K,

Bp = cosctZp — sin ctKjp, (5.114)

so that
OA=0;B=0. (5.115)
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We also define

Ay

B, =iB,, Bp=—iB,. (5.116)
Then A, B, A, B form an orthonormal time-independent basis for the Kihler base space,
such that

VﬂA;, = —CQ[LB[,,
V[LBD = CQpA,;,
dQ) = —cANB (5.117)
and
V;)Ag = —CQQBD,
Vﬁép = CQpA,;,
1 PN
dQ = E(9X2Q”V1VJ —A)ANB. (5.118)
Now note that
[A, B] = (ciaQ)A + (cipQ)B. (5.119)

It therefore follows that there exist functions a1, a9, 1,85 and co-ordinates wy,ws such

that 5 5 5 5
A:a17—|—a2—2, B:ﬂla—m+ﬂ2a—f(1}2 (5120)

Suppose that the remaining co-ordinates on the base are y*,32. As A and B are orthogonal
to A, B, there exist functions p;, v; such that

A=pdy’, B=uvdy (5.121)

fori=1,2.
Similarly, as

[A, B] = (ci ;Q)A + (cigQ) B (5.122)
it also follows that there exist functions p;, #; and z* for ¢ = 1,2 such that
A= p;dz’, B = da (5.123)

fori =1,2. As A, B, A, B form an orthonormal basis for the base space, we can without
loss of generality take z',z2,y', 3% to be co-ordinates on the base space.

In principle, the functions p;, p;, Vi, ; can depend on all the co-ordinates. However,
note that

J=ANB—ANAB = (pia — 1pg)dzt A dx? — (pyva — vipy)dy A dy?. (5.124)
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Imposing the constraint dJ = 0 thus gives the conditions

0 0

By (P02 — 1py) = @(Pl’& —vipy) = 0. (5.125)
One therefore can set
Q=dd + Qr (5.126)
with Qp = Qpi (2!, 2?)dz’ satisfying
dQr = —c(py1g — 1pg)dat A da. (5.127)
We also set
Q=dd+Qr (5.128)

where Q7 = Qr;(y',32)dy" satisfies
A 1
dQr = E(QXZQUVIVJ — ) (pyva — vips)dy A dy?. (5.129)

Here ® and ® are functions of z¢,y". Next we define

A" = cosc®A + sin c® B,

B’ = —sinc®A + cos c® B,

A" = cosc®A + sin c(fB,

B' = —sinc®A + cos cdB. (5.130)
Note that A’, B', A’, B" are an orthonormal basis of the Kihler base with the property that

va,[) == —CQTpB/,;, VﬂB/[, == CQT[LA,,; (5131)
and
V;)A/D = —CQTﬂB{;, VﬂB{; = CQTﬂA/D (5132)
with 1
dQp = —cA' AB',  dQr = =(92Q ViV — A)A' A B, (5.133)
C

These constraints therefore imply that

LoA=LoB =Lo,A=LoB=0. (5.134)
oyt oyt ozt daxt
Hence the Kéhler base is a product of two 2-manifolds My, Ms, with metric
dsy = ds*(My) + ds*(My). (5.135)

Taking the orthonormal basis e! = A’,e? = B’,e3 = A’,e* = B, the metrics on M; and
Mo are
ds* (M) = (eh)? + (€%)?,  ds?(My) = (e®)? + (e*)? . (5.136)

It is then straightforward to compute the curvature in this basis. We find that the only
non-vanishing components are fixed by

R1212 = —62, R3434 = 9X2QIJV[VJ — 62. (5.137)

Therefore we conclude that M; is H?, and M is H?, R? or S? depending on whether
QU VIVy — <0, 2QVViVy — =0 or QI ViV — ¢ > 0 respectively.
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5.2 Solutions with ¢y =0 and c3% + ¢4> = 0> # 0

In the next case, we shall assume that cg and ¢ do not both vanish, and define the vector
fields W, Y on the Kéhler base via

w =:C4I(-—03Z;
Y = 3K + ¢4 2. (5.138)

Then note that W # 0 and Y # 0, and (.19), (.20) and (£23) can be rewritten in terms
of Y and W as

V,Wg =0,
o
VW, = Eem’
0
vaé - E(Spév
V,Y, = 0. (5.139)

Therefore we find that W is a holomorphic Killing vector on the base and satisfies
AW = —V/20%J. (5.140)
Moreover, W preserves the complex structure
LwJ =0. (5.141)
In contrast, Y defines a closed 1-form on the base, which is conformally Killing with
Lyh=V20%h,  LyJ=+20%J. (5.142)
Here h denotes the metric of the Kéhler base. From ({.23) it is clear that W and Y

commute, so that locally one can choose co-ordinates ¢, 1 so that

0 0
V=35 Y=% (5.143)
2

and let the remaining two co-ordinates of the base space be z!, z2.
Note that Y and W satisfy

h(Y,W) =0, Y2 =w?2. (5.144)
Then, one can write the metric on the Kahler base locally as
ds? = V2V [S2(dg + x1)? + SP(de) + X)? + T2((dz")? + (d2?)?)] (5.145)

where S = S(z',2%), T = T(z',2%) and x; = x;;(2',2*)d2?. By making a co-ordinate
transformation of the form

b= - é@z log 52,
¢ =4,
1 (xl)
= (2?), (5.146)
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one can without loss of generality set S = 1 in (5.145) and drop primes throughout.
Then it is straightforward to show that the condition dY = 0 implies that x5 = 0, so
that
ds® = V27V [(d¢ + B)® + dy® + T?((dz")? + (dz)?)] (5.147)

where 3 = 3;(x!, 2?)dz’, and

J =

1 2
——d (e*V(dp 4 9)) . 5.148
or (0 +5) (5.148)
The necessary and sufficient condition in order for J to be a covariantly constant complex

9By _ 9By
<3m1 = aﬂ)‘ (5.149)

structure is
1

V2¢?
9B, 98,

In fact, we can take 72 — 57+ > 0 without loss of generality, (this can be obtained, if

T2

necessary, by making the re-definition 85 — —f3, and 2 — —22). So

1 (9By 0B
T2 = — - — . 1
737 (ot~ o (5150
In addition, (£.27) and (f£2§) can be rewritten as
1 2v/2
1 2vV2
o= }—{vapf — 2ixV; X (Im \) = 0. (5.151)
The real portions of (5.151]) imply that
C3 Cyq
Lif=-2f Lof=-—4% 5.152
Kf \/if zf \/if ( )
and hence 1
Cwf =0, Lyf—=-—gf 5.153
wf v/ 7° f ( )
Therefore

1
f= eﬁg%u(aﬂl,xz) (5.154)

for some function u(z',2?). It should be noted that although the Kihler metric h has
a conformal dependence on 1, the portion of the metric f~2h which appears in the five
dimensional metric does not depend on either ¢ or .

3

In order to examine the behaviour of the scalars, note that ([.2¢) implies that
X = X2, 2?). (5.155)

To proceed further, we introduce the following holomorphic basis for the Kéhler base space

L e (csdip + c4(dop + B) — igTdx)
e = c3 +cy + —olax ),
V20
, 6%9% . )
e’ = (—C4d1/1 + c3(do + B) + ipTdx ) (5.156)

V20
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with ei, e? obtained by complex conjugation. It is straightforward to show that in this
basis

J=- <e1 Ane 4 el A ei) (5.157)

as expected, and

20
K? = K*=0,
Z' = 7" =0,
5 1 L
7 = 72 = —\f—%eﬁ"%. (5.158)

Using this basis, one can compute explicitly the following components of the spin connec-
tion:

S ;. OT
Wl,mnemn =e¢ Vv2° v <_QC4 + : > )

V2712 0x?
_1 2 i 0T
w2,mn€mn —e v2¢ ¥ <—QC3 + W@) . (5159)

Moreover, it is straightforward to show that the imaginary portion of (F.151)) implies
that

1 _1 .2, 0u
2V X Imo = VR 5.160
V2V me oTu? Oxt ( )
and ) 9
_ 12 Ou
2VIXTImA = ——¢ Va2V = 5.161
V2V m gTu26 Ox? ( )
The imaginary parts of ([.24) and (f:2§) can then be rewritten as
0 (X N
— (=L = —Qﬂxgeﬁg%TV[ Imo,
Oxt \ u? u
X e
O (X1 _ o a LY, Tm A, (5.162)
0x? \ u? u

Note that as the V7 do not all vanish in the gauged theory, it follows that the imaginary
_1 2

parts of A and ¢ do not depend on ¢, and depend on 1 via the factor e v2° YTt s

therefore convenient to define

G(a!, 2?) = %e%g% Im A
u
27 L
H(z',2?) = Zevi®YImg, (5.163)
u
and rewrite (5.160), (5.161) and (5.162) as
V2i du
ViXTH = —— 5.164
XVI H QTU3 31'1’ ( )
V2i Ou
xlg = Y=t 9 1
xViX'g T3 922 (5.165)
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and

0 (X1 .
@ <?> = \/ingTHVIa
0 (X
57 <u—> V2ixoTGV . (5.166)
We next consider the constraints ([.31)), (£.36) and (f.37). These are equivalent to
0 0
5 (TH) = = (1G), (5.167)
and o (H\ 0 (¢ 0 (G o (M
@(7) - W(f) w(ﬁ - ‘W(?)- (5.168)

Note that (f.167) implies the integrability condition associated with (F.166), and
(6.16) implies that T-'H and T-'G satisfy the Cauchy-Riemann equations. Hence,
~1(H + iG) is a holomorphic function of z' + iz?.
The components of dQ) are also fixed by ([L.31)), (f.34) and ([£37) to be

dQy5 = 3u_4e_2‘/§g2wxv1XI,
dQy7 = dQyy = 0% 22 (cyH — ¢3G),

dQp = 72\[9 4 |: (C4g +03H)

1 0G 1 8T>} (5.169)

! +—=H
\/_ Tox2 T2 dal
with the remaining components determined by complex conjugation; this exhausts the

content of (f31)), (f:36) and (J£37). Using these components, it is straightforward to

compute df) in the co-ordinate basis; we find

- i (108G HOT X
dQl = e ﬁg2w|:<—ﬁg<fw + ﬁﬁ) +3¥VIXI> dw/\ (d¢+ﬁ)

) d T°
+ (-% (Ta% +He 1) —3XFV1XI> dz' A da®

+iT0? (dip A (—Gdx' + Hdx?) + (dp + B) A (Hdz' + Gdx?)) |. (5.170)

Using (4.39) and ({1.33), the gauge field strengths for these solutions can be written as

1 T°
Fl=d(f2X!(dt +Q)) + 6x (XIXJ — 5@”) Vy—da' A dx? (5.171)
u
which satisfy dF! = 0 automatically.
Next consider the integrability condition associated with (B.59): this can be written as
3xVr (FI —d(f2XT(dt + 0))) = —d(wp,mn€™"€” + wpmne""eP). (5.172)

This can be evaluated to give the constraint

T2
Olog T + 2072 = 182 (XIXJ Q”> ViVi—s (5.173)
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where O = (-2;)% + ()2 is the Laplacian on R2. In fact, this constraint enables (f.170)

Ozt 922
to be solved for © (up to a total derivative); we find

—V20%y  1(10G  HOTY, 3
e ) v X I
Q=— To(—Gdx* da? —— ===t = |+ =V X ) (d
7% [z of Qac—i—Hm)—l—( ﬂg(T&r? T28x1>+92u2 T >( ¢+ﬁ)]
(5.174)
and the constraint (p.164) implies that the scalars X are given by
X7 =u"qr + xu (—\/593 <?@+ﬁ% +WVJX \%; (5.175)

for constant g;.

Lastly, consider the equations (%.34)) and (4.35). These are equivalent to

V2d <C4 G Re >\> —c3 G Re a>> = iy dQ (5.176)

and

f f

where d denotes the restriction of the exterior derivative to hypersurfaces of constant .

V2d <Cg (l Re A> + ¢4 (l Re 0>> = iydQ 4+ V20%Q . (5.177)

The integrability conditions of these two equations are
LydQ=0 (5.178)

and
LydQ = —/20%dQ (5.179)

which hold automatically.

5.3 Solutions with ¢co =c3=¢4 =0

We now turn to the class of solutions with c2 = ¢3 = ¢4 = 0. It is clear that ({.19), (4.24)
and ([£29) imply that K and Z are covariantly constant. In particular, this implies that /K2
is constant and without loss of generality we can set K2 = 1. One can choose co-ordinates

¢, ¥ so that locally

B 0
K=35 Z2=55 (5.180)

2 can be chosen on the base so that the Kédhler metric

and two additional co-ordinates z!, x
takes the form
ds® = d¢? + dy® + T?((dz")? + (dz?)?) (5.181)

where T = T(x!, 2?).
Recall that K A Z — %J is anti-self-dual, so taking positive orientation on the base with
respect to T2%d¢ A dip A dx' A dx?, we have

J =do Adip — T?dzt A da?. (5.182)
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This complex structure is automatically covariantly constant. Then the real portions of

({.27) and (4.2§) imply that

Lif=~Lyf=0, (5.183)

so that f is only a function of #! and z?. Also, as in the previous case, the real part of

([{24) and (f23) implies that

LrX=rL;XT =0, (5.184)
SO
X' = xT (2!, 2?). (5.185)
It is convenient to define 0 o
) 7
Gg=—Im), H=—Imo. 5.186
7 7 (5.186)
Then the remaining portions of (£.27), (28), (£:24) and (E25) can be rewritten as
0 Xy )
@(F) = \/§ZXT'HV[,
0 Xy )
W(F) = V2ixTGV;. (5.187)

As the Vi do not all vanish, these constraints imply that
G =6 2%, H=mH" ). (5.188)
We take the following holomorphic basis for the Kéhler base space:

91:

(Tdz* + id),

}_.S‘,_.
[\

e’ = —(Tda® +idy), (5.189)

N

with el, e? fixed by complex conjugation.
In this basis, we obtain the following spin connection components:

1 or
mn _ _ — -
Wi,mn€ - \/§T2 8.%'2’
1 or
mn _ _ - =
W2 mn€ = \/§T2 9l (5190)
and the components of K and Z are:
l
i
Zy =27 =0, Ly =—U5 = ———. 5.191
1 1 2 2 \/5 ( )
To proceed, we turn to the constraint ([L31)). This implies that
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and

xVix!
dQy; = —3 ]{ - (5.193)
The constraints ([£.36) and (£.37) then imply that
together with
i (100G HOT

and the constraints 5 (9
and o (MY & (G o (g o (M

(2= 2 (2 (V=L (Z). 1

ox! <T> Ox? <T>7 ox! (T) Ox? <T> (5.197)

Just as in the previous section, these constraints imply that T 'H and T~'G satisfy the
Cauchy-Riemann equations; 77! (H + iG) is a holomorphic function of ! + iz?.
In these co-ordinates df) takes the form

| (.0 1
dQ:—\/Z_< a% HF> <dm1/\dx2——2dq§/\dw>

f4 Xy X! (T2t A da® + do A d) (5.198)

The gauge field strengths for these solutions can be written as
Fl=d(f2x!(dt+ Q) + 6X 7 VJ <XIXJ Q” ) dz' A da? (5.199)

which automatically satisfy the Bianchi identity dF! = 0.
Finally the integrability condition associated with (B.59) can be written as

OlogT = 185 (Xf X7 - Q” > ViV T?. (5.200)

f2
It is then straightforward to show that these constraints imply that the integrability con-
dition d?€Q) = 0 associated with the expression in () holds automatically. Lastly, the
constraints ([.34) and (£33) fix d(Re %) and d(Re %) in terms of constant linear com-
binations of d¢ and di; these conditions do not impose any further constraints on the
geometry.

6. Summary and discussion

In this paper we have employed the spinorial geometry method for the task of classifying
1/2 supersymmetric solutions with at least one time-like Killing spinor of the theory of

N = 2, D = 5 supergravity. Our results provide a general framework for the explicit
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construction of many new black holes and the investigation of their physical properties and
relevance to AdS/CFT correspondence and holography.

In general, supersymmetric solutions in five dimensional theories must preserve either 2,
4, 6 or 8 of the supersymmetries. This is because the Killing spinor equations are linear over
C. However in the ungauged theories, it was found that supersymmetric solutions can only
preserve 4 or 8 of supersymmetries [[§, B]]. Moreover, to find time-like supersymmetric
solutions in the ungauged theory, one must solve the gauge equations and the Bianchi
identities in addition to the Killing spinor equations. In the null case one must additionally
solve one of the components of the Einstein equations of motion. A similar situation arises
for 1/4 supersymmetric solutions in the gauged theory. However, for the solutions with
1/2 supersymmetry considered in our present work, we have demonstrated that if one of
the Killing spinors is time-like, then supersymmetry and Bianchi identities alone imply
that all components of Einstein and gauge equations together with the scalar equations are
automatically satisfied.

Maximally supersymmetric solutions (preserving all 8 of the supersymmetries) of the
five dimensional gauged supergravity theory have vanishing gauge field strengths and con-
stant scalars and are locally isometric to AdSs. Moreover, it has been demonstrated in [B7]
that all solutions of N = 2, D = 5 supergravity preserving 3/4 of supersymmetry must
be locally isometric to AdSs, with vanishing gauge field strengths and constant scalars.
An analogous situation also arises in the case of D = 11 supergravity, where it has been
shown that all solutions with 31/32 supersymmetry must be locally isometric to a maxi-
mally supersymmetric solution [BJ]. However, in the case of D = 11 supergravity, it has
been shown that one cannot obtain 31/32 supersymmetric solutions by taking quotients of
the maximally supersymmetric solutions [B4]. In contrast, there is a 3/4-supersymmetric
supersymmetric solution of N = 2, D = 5 gauged supergravity which is obtained by taking
a certain quotient of AdSs [BJ).

One future direction is the completion of the classification of supersymmetric solutions
in N =2, D = 5 supergravity by classifying 1/2 supersymmetric solutions with two null
Killing spinors (i.e., two Killing spinors with associated null Killing vectors). In addition,
it would be interesting to investigate whether there are any regular asymptotically AdSs
black ring solutions (see [BO] for a recent discussion). Supersymmetric black rings are
known to exist in the ungauged theory [B7-[(]. For asymptotically flat supersymmetric
black rings of N = 2, D = 5 ungauged supergravity, supersymmetry is enhanced from
1/2 supersymmetry to maximal supersymmetry at the horizon. If there do exist AdSs
black rings in the gauged theory, it may be reasonable to expect that the supersymmetry
will be enhanced from 1/4 to 1/2 at the horizon. We hope that the classification of 1/2
supersymmetric solutions can provide a method of determining whether there exists a 1/2
supersymmetric solution corresponding to the near-horizon geometry of a black ring. It
should be noted that in [Bf], black rings with two U(1) symmetries have already been
excluded. However, as we have seen, 1/2 supersymmetric solutions in general only have
one additional U(1) symmetry; so more general ring solutions may be possible.
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A. Systematic treatment of the Killing spinor equation

In this appendix we will evaluate the linear system obtained from the Killing spinor acting
on n® given in (B:23), keeping the parameters arbitrary. It would naively appear that
we have to evaluate two sets of Killing spinor equations, according to the two choices of
symplectic index a. However, making use of the symplectic Majorana condition, together
with the fact that the gauge field strengths and scalars are real, it is straightforward to
show that it suffices just to consider the case when a = 1, the a = 2 equations are then
implied automatically. In the following, it will be convenient to define H = X;F! and

= 8-
Hp pgi” -
From the dilatino equation we obtain

o (Flon — X T Hypp ) €™ — X (F1,™ — XTH, ™ + 00X =
2V (XIXJ - gQ”> o* +V2i (Flom — X' Hop, — 0 X1) ™ (A1)
V2io (Flome™s — X Hop + 0 XT) €5 — g (F1,,™ — X H,,™ — 90X =
2%V (XIXJ — gQ” >emq(,um)* — V2 (Flog — X Hog + 95X")
2 (F g — X Hypg) ™ (A.2)
V2i (—F o + X Hom + 0 XT) €™ = Ne™ (Fl i — X Hppz) =
—2xVy (XIXJ — ;@”) N —o (F1," - 0o X' — X'H,,™)  (A3)

Then from the gravitino part of the Killing spinor equations we obtain the following con-
straints:
From along the O-direction of the supercovariant derivative-

™ 1 o
O = _% (_WO,Om + HOm) - ZU (2W0,mn + Hmn) €
1 m m X 1 I *
+Z>\(Hm + 2wom™) — SV (X' —34)) o, (A.4)
g = s (wo,0me™q + Home™g) — ﬁ)\ (wo,0 + Hog) — Z( m" = 2wom™) g
1 *
- <—§qu + u10,mq> p"+ %VI (X7 +3A7) ema(™)*, (A.5)
1 - 1
Ooo = 7% (—wo,0m + Hom) € np" — 79 Qwom™ + Hy™)
1 -
A (i + 200,70 €7 + gvf(Xf — 34D, (A.6)
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From along the p-direction of the supercovariant derivative-
i 3 o A 3 3x
8p)\ = ﬁ <wp70m — §Hpm> ,LLm — §wp,mn6m" + 5 (wpmm - §H0p> + 7V]AP{O'*, (A?)
io 1 i\
817/1/@ = —2\/5 <—2u)p70m€mq + §Hmn€mn5pq> l— (2(4)1770(1 + 3Hpq — Hmmépq)

22

1 3 1
+ <§Wp,mm + 1H0p> pg — 1" (wp,mq + §H0m5pq>

) 3
+XV] <_EXIU*5PQ + EAII)qu(Mm)*> s (A8)
Opo = L (2wp,0m — Hpm) € + é (wp ma€ " — HOﬁEﬁp) -7 (2wp,m™ + Hop)
2\/5 ) 2 ) 4 )
) - 7 3
———Hp ") — Vi | —=XT ()" + = AN ) . A9
e Vi (X () + 340 (29)

From along the p-direction of the supercovariant derivative-

A 1
IpA = Hpm) p™ + 7 (2wpm™ — Hop) + 50 (Home™p = wpmn€™)

{
= — 2 =
2y3 B 1

? ?
b ——=Hp s+ XVi | —=
vz ’“<¢§

1 1 - 1 1 3
Ophig = —E)\ (Wp,Oq + ZHmnEm"qu> A7 <wp,0m€mq + o Hm " epg + §Hpm€mq>

1 = 3 1
-t (wp,nq + §H0m€mn€pq> + (Z op T §wp7mm> Hg

3
X epm(u™)* + §A{;a*> , (A.10)

i 3
+ XxVi <EXI)\*€pq + §Azl,€mq(,um)*> ) (A.11)
a*U—L’w* _ M "_|_l)\,,,7”7m_ 1 _ m_|_§H,
N5 p,0m€ nH 9 Wp,mn€ o 2Wp,m 4 10p
3i - 3x .
erltfmﬁem%5 — ?VIAII;)\ . (A.12)

Throughout these equations, spatial indices of €, €mn, wA,BCH FI, 5 and Hp have
been raised with 679.

B. Integrability conditions and equations of motion

In this appendix we examine the integrability conditions of the Killing spinor equations. It
will be shown that, if a background preserves at least half of the supersymmetry, and admits
a Killing spinor for which the associated Killing vector is time-like, and the Bianchi identity
holds, then all components of the Einstein, gauge and scalar equations hold automatically.

First we consider the integrability condition associated with the gravitino equation
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(.9). After some gamma matrix manipulation we find

1 1
0 = — 7 Rapp, 5,717 = V1 X1(yg % — 455177 F gy, e

1 3
+ZX[(’}/[aﬁ162 — 45€57ﬁ2)Vﬁ]F151526a +xVr (V[QXI’)/B] — §F1a5> et

1 I J I J
VR (F 6:8.F7 3,812 + Flg (o F 70102505,

1 3
+ZF15152FJ616270!5 B §F10451FJ55276152>EQ

2
X X
+ VXX (F 8,8, Vag P2 + Ay F g, ) eeb + S VIViIX X gt (B)
Next consider the dilatino equation (R.13)). This gives the integrability condition

3 3 1
0= nyﬁvavﬁxlea + 7’( (va(XIVJXJ )+ §VJXJ VgX]’yﬁa>eab6b

1 3
+va<<ZQ1J - gXIXJ> F‘]mﬁQ)WBlBQGa

3 3
+ (1—6XJFJ6152v§3X17a51ﬁ2ﬁ3 _ ZXJFJa61v§2X[’Yﬁ1ﬁ2> @

1 3
— 2V XK <ZQ1J - gXIXJ> FY o gyPete

1 3
+ Xk ((g@u - EXIXJ> F7 g, FX g, 5,77 17255

1 1 3
_ECIJMXMFJBWFK&“VQ@% + <§Q1J - ZXIXJ> FJBMFKa“’YB> e

(B.2)
It will be convenient to define
Eus = Rop + QriF o, F/ 5" — QriVaX'VsX’
+9ag <_%QIJFI,81,82FJ6162 +6x° (%Q” - XIXJ) VIVJ>
Gra = V7 (QriF”ap) + 1—16CIJK€a6 10203Ba g 5 R 5.5,
Sr = VOV X — <%CMN1 — %XICMN JXJ> Vo XMyaxN
1 (X XPCOnpr — 2Chint — 6X1 Xn Xn + =X,C XJ> FM 5 5 FNB152
2 M NPI 6 MNI IAMAN 6 IYMNJ 5162

1
=32 ViV <§QMLQNPCLPI + X7(QMN — 2XMXN)> (B.3)

so that E,3 = 0, Gjo = 0 and S; = 0 correspond to the Einstein, gauge field and scalar
equations of motion respectively.

To proceed we act on the gravitino integrability condition (B.1]) from the left with v°
and contract over the index 3. We assume that the Bianchi identity dF! = 0 holds. After
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some considerable gamma matrix manipulation (and making use of (R.13) to simplify the
expressions further), we find the constraint

1
(Eamﬁ g’ (waﬁGm - 2G1a>> €@ = 0. (B.4)

Also, on contracting the dilatino integrability condition (B.2) with v*, and again assuming
the Bianchi identity dF! = 0 holds, we find

<S[ - ;(Gla — X]XJGJO{)’)/O(> e =0. (B.5)

To proceed, we evaluate the constraints (B.4) and (B.§) on a background which pre-
serves at least half of the supersymmetry, and which admits a Killing spinor for which
the associated Killing vector is time-like. In particular, we first consider a generic Killing
spinor
= M\ + ple’ + ge'?,
= —0*1 — € (p') el + Nel? (B.7)

w
D

Substituting this expression into (@) for @ = 0 gives the constraints
) 1 2. o7
AEgo — V2iu? | Eop + §X Grp | — §)‘X Gro = 0,
. 1 I . 1 I 2 I
Eoopp+\/§za qu—gX Grq € 4+/2i\ Eop—gX GrP —|—§X Grop? = 0,
1 = 2
O'E(]O - \/51 (E(]p + §X1G1p> qu,uq - gXIG[(]O' = 0. (BS)

Evaluating these constraints on the canonical form of the N = 1 time-like Killing spinor
by setting A = f, u! = u? = 0 = 0 we obtain the constraints

2

Eyo = gXIGlo,
1

Eop = §X1G1p,
|-

Now substitute these expressions back into (B.§) and eliminate the E,s terms to find
XIGIp,up =Y
X1Grop? = 0,
X'GrpeP ut = 0. (B.10)
Assuming that the background is at least half-supersymmetric, we take (u',u?) # (0,0),

and hence find
XIGra=0 (B.11)
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and
Eoo = Eop = 0. (B.12)

Next consider (B.4) for a = p evaluated on the generic spinor n'. Using the constraints
Epp =0 and X I'Gro = 0 which we have already obtained, this expression simplifies to

(Epgy? + qu'yq)nl =0 (B.13)

from which we find the constraints

Epqu® =0,
oEpels + AE,; = 0,
Epzelout =0 (B.14)
and taking (B.4) with a = p we find
Eﬁq/‘q =0,
o Epgely + AEy; = 0,
Epgelop’ = 0. (B.15)

Evaluating these constraints on the canonical N = 1 time-like spinor by taking A =

f,put = p? = 0 =0, we obtain the constraints
Ey=0, E,=0. (B.16)

Hence we have shown that for solutions with at least half supersymmetry, the constraint

(B-4) implies that
E.3=0, X!'Gr,=0. B.17
B

Next consider the constraint ([B.§) obtained from the dilatino integrability conditions.
On using X/G, = 0 this constraint simplifies to

2
<SI _ gglwa> € = 0. (B.18)
Evaluating this expression on the generic Killing spinor n%, one obtains

2 224
)\ <S[ - gG]O) + \g_ZG[p,U,p = 07

2 2v/21
StuP + ngo,up + % (UG[qeqp + AG/P) =0,
2 24/21 _
g <SI B §GI°> - :{ZGfpe”qﬂq = 0. (B.19)

Evaluating these constraints on the canonical N = 1 time-like spinor by taking A = f, u! =

u? = o =0, the following conditions are obtained

2
Sr = §G107
G, =G = 0. (B.20)
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Now substitute these constraints back into (B.19) to find
Grop? = 0. (B.21)

Assuming that the background is at least half-supersymmetric, we take (u!,u?) # (0,0),
and hence

G =0. (B.22)

Hence from the constraint (B.5) we have found the constraints

Sr=0, Gro=0. (B.23)
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